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a,, 
F, 
h, 

M o,(t), 
rir(x, 0, 

ambient sound speed ; 
function defining the displacement surface ; 
a normal distance from the plate, slightly 
larger than the boundary-layer thickness ; 
instantaneous plate Mach number, U,(t)/a, ; 
surface mass flux normal to the plate, equal to 

P&u ; 
Reynolds number, xU,(t)/v ; 
time ; 

(4 4, 

u,(t), 

L&x, t), 

6,(x, tX 
A*(x, t). 

Cartesian coordinate system, fixed relative to 
the plate, see Fig. 1; 
velocity vector of the boundary layer flow 
field ; 
plate speed ; 

V, 

64% t)* 

Subscripts 

a constant of order unity ; 
a quantity defined by equation (5.1) : 
a quantity defined by equation (5.2): 
displacement thickness for unsteady flows with 
surface mass transfer ; 
“scaled” kinematic viscosity, being a constant 
equal to cv, ; 
density. 

e (or co), conditions at the outer edge of the boundary 
layer ; 

W conditions at the surface uf the plate; 
I. 2, conditions at x = x, and x = x1. respectively. 

NOMENCLATURE 1. INTRODUCTION 

THE CONCEPT of the displacement thickness of a viscous 
boundary layer is very useful and important, particularly in 
studying the viscous-inviscid interaction effects [l]. For 
steady flows with no surface mass transfer, the procedure 
for calculating this thickness is standard and straightforward 
(see e.g. Schlichting [2]). When the boundary layer is 
unsteady, the displacement surface can also be found by 
regarding such a surface as a fictitious solid boundary 
(impermeable) placed in the given free stream, and the 
unsteady, inviscid boundary condition on such a boundary 
leads to a normal velocity distribution just the same as that 
given by the boundary layer solutions at the outer edge. 
This was first done by Moore and Ostrach [3] who derived 
a differential equation for such a surface, valid for general, 
unsteady boundary layers, but without surface mass transfer. 

With surface mass flux, the effective displacement thick- 
ness of a boundary layer has been studied by Mann [4] for 
the simple geometry of a flat plate in parallel motion. The 
analysis was later generalized by Hayasi [5] to account for 
arbitrary geometries However these analyses were all aimed 
at steady flow situations. 

In many practical applications, such as flights of rockets, 
missiles or reentry vehicles, a continuously varying flight 
speed is often encountered. It is therefore of importance to 
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study the unsteady boundary layers, and sometimes, to 
investigate the effective means for their cooling and controls. 
This in turn warrants the need for studying the unsteady 
boundary-layer flows including the effect of surface mass 
transfer. This study has recently been done for the special 
case of a semi-infinite flat plate in nearly quasi-steady 
motion parallel to itself with a particular form of surface 
mass flux distribution [6]. 

The purpose of this note is to show how the previous 
studies on the displacement thickness of a boundary layer 
can be extended and generalized to situations involving both 
flow unsteadiness and surface mass transfer. Again the 
simple geometry of a flat plate moving in its own plane is 
chosen to demonstrate the main idea, the surface mass gux 
being allowed to have arbitrary distributions, r&(x, r). This 
study evidently has the significance of being a necessary first 
step toward understanding the various consequences due 
to the displacement effect of such boundary layers, including 
the induced pressures. 

It is noted here that the combined effects of surface mass 
transfer and flow unsteadiness on the displacement thickness 
of a boundary layer, even for this simple configuration, do 
not seem to have been discussed before. 

2. ANALYSIS 

Consider now the problem of a sharp-edged semi-infinite 
tlat plate moving with an arbitrary, time~ependent velocity, 
U,(t), into a compressible fluid at resf an arbitrary form of 
rir(x, r) being prescribed on the surface of the plate. It is 
convenient to study the problem with a coordinate system 
(x, _v) fixed with respect to the plate (see Fig 1). The trans- 
formation of the equations of motion from an inertial frame 
of reference to this generally non-inertial frame gives rise to 
an additional term in the x-momentum equation, well 
known as the “apparent” pressure gradient term. 

In tbe present nota, we will assume that the sob&ions to 
the unsteady, boundary-layer flow are known in this plate- 

y iv) 

t 

llxed coordinate system, and propose to study the cor- 
responding displacement thickness. 

Let the unsteady displacement surface be represented by 
the equation 

F(x, y, t) z% y - A*(& t) = 0, (1) 

where, obviously, d*(x, t) is the displacement thickness to 
be determined. 

As is implied in the definition of the effective displacement 
surface, F(x, y, t) = 0 is to represent a fictitious solid 
boundary placed in an unsteady, inviscid free stream with 
velocity U,(t). On this fictitious surface, a vertical velocity 
distribution, IJ~(X, t), is presumed known from the solutions 
of the appropriate unsteady boundary layer flow. 

It is then not difficult to obtain a relationship between 
o&x, t) and d*(x, t) through the boundary condition of 
inviscid flow over an impermeable solid surface, namely, 
that a fluid particle can only slide along the surface F = 0. 
The approximate expression is (see [7] for details) 

u,(x, t) N Urn(t) 5 + y;. (2) 

The approximation involved in the above result is 
related to assuming that u, can be taken to be equal to the 
component of the fluid velocity normal to the surface 
F = 0 when viewed from a frame of reference in which the 
plate is moving into fluid at rest; the error being of order 
(8d*~&}2, usually very small. 

Next we will attempt to transform equation (2) into a 
somewhat more convenient form involving familiar quanti- 
ties in the boundary layer theory. This can be accomplished 
by co~~ucti~ a control volume and considering its mass 
conservation. 

Consider a control volume bounded by four plane 
boundaries, namely, two vertical planes: x = xi, x = x2 
and two horizontal planes : the plate itself and y = h where 
h is chosen to be slightly larger than the Sunday-layer 
thickness. (See Fig. 2,) 

Boundary layer thickness 

y=Hx/) 

FIG. 1. Flow configuration in plate-fixed coordinate system 



1370 SHORTER COMMUNICATIONS 

A mass balance immediately yields the following integral Finally we obtain the desired differential equation for the 
relation : dedication of the quantity A*(x, t) by combining equa- 

xz 

I s 

k tions (5) and (2). It is 
aA* 

(P% dy + (PJJ, - Ped dx - 
5 

Iad* a 
(P& dy ax+Zic-z 

=;i;s*+;_$@+* (61 
m m pro UC0 

0 x1 0 
h x2 

a 

I 

Equation (6) determines A*(x, r) in terms of the known 

=z?t 
p dx dy. (3) quantities S*, S, and puvu/pm U,. 

x 
We then let x2 approach .x1 arbitrarily: i.e. x1 = x1 + dx. 3. DISCUSSION AND CONCLUDING RKMARKS 

Assuming the boundary-layer solutions and surface mass It is noted that equation (6) reduces to that obtained by 
flux are analytic and possess Taylor series expansions. we Mann [4] when steady boundary layers are considered. 

~x~~.li 
FIG. 2. Control volume for mass balance. 

obtain immediately the following relation after applying the 
limiting process of Ax + 0 to equation (3): 

Since in the problem considered, pe = p, = ambient 
density = constant and U, = U, (t), we can write equation 
(4) in the following form : 

pwv, -- pmv. + P,U, -$’ + PC+9 = 0, (51 

with 

OCI 

d&x, t) =a dy. 

On the other hand, it checks with Moore and Ostrach’s [33 
results for this particular geometry of a flat plate moving in 
its own plane, when pllv,,, vanishes. 

It should be noted that the left hand side of equation (6), 
as a whole, represents the ins~t~eous deflection angle of 
the streamline at the outer edge of the unsteady boundary 
layer, and is directly related to the calculation of unsteady 
weak interaction pressures [7]. In many practical applica- 
tions, induced pressure calculation in particular, the form of 
the displacement thickness, A*(x, t), itself seems to be of less 
importance than its effect on the deflection of the outer 
inviscid flow. Therefore, equation (6) can be used directly in 
many circumstances without having to be solved explicitly 
for A*@, r). 

To be pointed out also is the fact that, while it might 
appear to be a simple extension of the result due to Moore- 
Ostrach [3], the result obtained here, equation (6). is by no 
means trivial. The explicit, additional term pwv,/p, Urn, in 
equation (6) does not entirely represent the contribution of 
the surface mass flux to the displacement effect. An implicit 
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contribution also enters through the quantities 6* and 6, 1581. The author acknowledges some helpful comments of 
and these. quantities am based on boundary-layer profiles E. Reshotko. 
which have also, implicitly, included the etfect of blowing 
(or suction) through the appropriate botmdary conditions 
used in solving the boundary-layer equations 

For flows with moderate Mach numbers [I& = O(l)], 
the additional term p,,,a&~,U, , may have signifmnt 1, 
wn~butio~ to the disp~ent thickn~ because its 
magnitude may well be comparable to that of the term 
as*/ax. 2. 

For nearly quasi-steady hypersonic flows with “similarity 
type” of blowing (or suction), i.e. p,v,/p, U, = u/(Re)*, as 
treated in [6], this additional term is found to be small 3. 
compared to a&*/ax; however, it may become comparable 
to the term U,’ (a&$&), depending on the parameters 
characterizing the flow unsteadiness. A discussion on 

4 
’ 

boundary layer induced pressures for such Sows also 
appears in [6]. 5. 

Finally we remark that the idea used in this note can be 
employed to generalize the study to more general flow 6. 
configurations. Thus in two dimensional flow, for example, 
we shall have the situations of V, = um (x, t), pm = p-(x. t) 
for an arbitrary body in unsteady motion. 
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EXTENSION OF THE NUMEBKXL METHOD 

AND BIG PROBES 

FOR MZLTING 

4 
E, 
k, 
k CffI 

L, 

z, 

N% 

Q> 

NOMENCLATURE 

horizontal dimension of test cell [cm] ; 
vertical dimension of test cell [cm] ; 
thermal conductivity [cal/cms”C] ; 
effective thermal conductivity [cal/cms”C] ; 
vertical dimension of liquid [cm] ; 
noddl position in space network ; 
total number of space nodes ; 
Nusselt number, k&k, [dimensionless] ; 
heat flux [cal/cm’s] ; 

__- 
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r, number of spatial node at solid-liquid interface; 
4 time [s] ; 
7 temperature [“Cl ; 

Tf, fusion temperature E”C] ; 
% velocity [cm/s] ; 
x, distance along vertical axis [cm]. 

Greek symbols 
cr, thermal diffusivity [ems/s] ; 
E, ice thickness, interface position [cm] ; 
0, point temperature minus fusion temperature, T - 

T rori. 
‘FL --,A, 

2, iatent heat of fusion [cal/g] ; 
P? density [g,‘cm3]. 


